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Abstract

This paper introduces the functional factor models with the time-varying beta.

The advantage of doing this is that functional factor models give the time-

varying beta intuitively, from which we find that in the Chinese A-share market,

with both the Fama-French 3-factor model and the 5-factor model, the market

factor has a positive effect on excess returns of A shares all the time, the size

factor and the value factor have a positive impact on excess returns of A shares

in a stable period, the investment factor had a positive effect after the non-

tradable share reform and has changed to a negative impact since the 2008

financial crisis, while the profitability factor always has a negative impact on A

shares.
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1. Introduction

Based on the mean-variance model (Markowitz, 1952), Sharpe (1964), Lint-

ner (1965) and Mossin (1966) put forward the capital asset pricing model (CAP-

M), making the regression coefficient beta to measure exposure to market risk.

Later, more and more scholars add firm-specific (unsystematic) risk factors into

the CAPM, leading to the multi-factor models (Fama and French, 1992, 1993,

2015; Carhart, 1997; Acharya and Pedersen, 2005). However, most factor mod-

els are restricted to constant beta assumption, and existing researches about

the time-varying beta mainly use the kalman filter model (Hameed, 1997; Zhou,

2013). In this paper, we propose a functional approach (Ramsay and Silverman,

2005; Horváth and Kokoszka, 2012) to dynamic asset pricing models based on

the CAPM, the Fama-French three factor model and the five factor model, which

can explore the time variation of exposures to risk factors.

There has always been controversy about the model setting and statistical

testing of these factor models, especially for the beta. As the beta is unobserv-

able, one simple estimation method is to perform linear regression with time

series data, and then get the constant beta. Jayasinghe et al. (2014); Bu et al.

(2019) argue that ordinary linear regression for constant betas may not be com-

patible with financial theory. In addition, we should notice that the constant

beta assumption depends on stationarity, but whether or not the beta is sta-

tionary enough to behave like a constant. Levy (1971) studies the stationarity

of betas with different portfolios and finds that betas fail to be stationary for

the smaller portfolios. Further, Blume (1975) proves that betas exhibit mean-

reversion tendency. Bos and Newbold (1984); Bollerslev et al. (1988) also show

that beta is time-varying. Other than these, many scholars argue that asset

returns are unstable, so they cannot be in favor of time-invariant betas (Camp-

bell and Hentschel, 1992; Glosten et al., 1993). For statistical testing, Fama and

French (2016) point out that the constant-beta assumption may be a potential

problem in tests of asset pricing models. Bodurtha Jr and Mark (1991) propose

the GMM test for the CAPM with time-varying returns and risks, and Velu and
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Zhou (1999) extend the GMM test to multi-factor asset pricing models.

In view of the considerable evidence showing that estimated betas are sig-

nificantly time-varying, asset pricing researches have been devoted to studying

the time variation of betas. Merton (1973) and Breeden (1979) extend the

one-period asset pricing model into multi-period models, and put forward the

intertemporal capital asset pricing model and the consumption capital asset

pricing model respectively. There are also many advocating conditional asset

pricing models, such as the conditional CAPM (Ferson and Harvey, 1991; Ja-

gannathan and Wang, 1996) and the dynamic conditional betas model (Engle,

2016), which are applied in equity, bond, and portfolios. In empirical research,

the ARMA model, GARCH model, and Kalman filter model are mainly used

to study the time variation of betas. Blume (1975); Sunder (1980) confirm the

time-varying of betas with the AR (1) model and Ohlson and Rosenberg (1982);

Collins et al. (1987) use the ARMA model. Ng (1991); Lee et al. (2001) ana-

lyze the time-varying volatility with various GARCH models. As for Kalman

filter, Kim et al. (2009); Borup (2019) make the time-varying coefficient ap-

proach with Kalman filter technique. In addition, Kim and Kim (2016) reject

the constant-volatility assumption and employ the nonparametric kernel method

for time-varying volatility. Li et al. (2015) put forward a time-varying coefficient

model with sieve approximation approach.

Functional analysis is widely used in quantum mechanics, bioengineering,

and other fields. Recently, functional analysis is beginning to be used in finance.

Ramsay and Silverman (2005), Ramsay and Silverman (2007) systematically

introduce functional data analysis. Horváth and Kokoszka (2012) develop func-

tional data analysis in time series data. Based on this theory, Kokoszka et al.

(2015) introduce functional regression into the asset pricing model by transform-

ing daily asset returns and the market factor into functions and constructing a

functional factor model with both scalar factors and functional factors. How-

ever, Kokoszka et al. (2015) employ the functional factor model with constant

betas assumption. In addition, Kokoszka et al. (2018) put forward a statistical

significance test for risk factors in functional regression with functional cross-
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section returns and scalar risk factors. Also based on the research of Horváth

and Kokoszka (2012), Cao et al. (2019) decompose the cross-section returns with

functional principal component analysis (FPCA) and find the momentum and

disposition effects in Chinas A-share market.

Motivated by the functional factor model shown in Kokoszka et al. (2015,

2018), we introduce functional asset pricing models, which can intuitively act

out how betas change over time. The main contribution of this paper is building

functional asset pricing models that give time-varying betas. One advantage of

functional regression is that it allows the estimation of functional coefficients.

Different from the model of Kokoszka et al. (2018), we make time-series data

as functions of time t and both excess returns and risk factors are functional.

Based on the functional factor models in this paper, we can test the validity of

factor models without the restriction of constant betas.

The rest of this paper is organized as follows: Section 2 provides the function-

al factor models. Section 3 introduces the computational issues for time-varying

beta and confidence intervals. Based on functional data illustrated in Section

4, we investigate the time variation of betas in Section 5. Section 6 summarises

the application of functional factor models in the Chinese stock market.

2. Conventional and Functional Factor Models

2.1. Conventional Factor Models

For any security or portfolio, the conventional CAPM 1 is designed by the

linear regression:

Rt = α+ βRM,t + εt (1)

where Rt is the excess return on any security or portfolio at time t2; RM,t is

the excess return on market portfolio related to the modern portfolio theory,

1 For any security or portfolio s, the conventional CAPM can be expressed as Rs
t =

αs + βsRM,t + εst , to be concise, we omit superscript s.
2 In this paper, we choose monthly data from January 1997 to December 2018 (264 months

in total), so t = 1, 2, . . . , 264.
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representing the market factor.

The CAPM is gradually developed to the three-factor model (Fama and

French, 1993):

Rt = α+ β1RM,t + β2SMBt + β3HMLt + εt (2)

where SMBt is the difference between returns on a value-weighted portfolio of

small stocks and that of big stocks, representing the size factor; HMLt is the

difference of returns for high and low book-to-market ratio, representing the

value factor.

And the five-factor model (Fama and French, 2015):

Rt = α+ β1RM,t + β2SMBt + β3HMLt + β4RMWt + β5CMAt + εt (3)

where RMWt is the difference of returns for robust and weak operating prof-

it, representing the profitability factor; CMAt is the difference of returns for

conservative and aggressive investment, representing the investment factor.

2.2. Functional Factor Models

Now we introduce the functional analysis for factor models. By analogy with

the conventional factor model, the functional CAPM 3 is:

Ri(t) = α(t) + β(t)RM,i(t) + εi(t) (4)

where Ri(t) is the functional time-series excess return on portfolio over time t

4; RM,i(t) is the functional time-series market factor over time t 5; β(t) is the

functional coefficient which can intuitively express the time-varying of beta.

3 For any portfolio s, the functional CAPM can be expressed as Rs
i (t) = αs(t) +

βs(t)RM,i(t) + εsi (t), where functional observation i represents the finer portfolio or stock

in portfolio s, to be concise, we omit superscript s.
4 We make excess return of stock or portfolio i a function of time t (t = 1, 2, . . . , 264), i.e.,

Ri(t).
5 We make market factor a function of time t (t = 1, 2, . . . , 264), i.e., RM,i(t), and for

different functional excess returns of stocks or portfolios, there is the same functional market

factor, that is, RM,i(t) stays the same for different i. So do other risk factors.
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The functional three-factor model is:

Ri(t) = α(t) + β1(t)RM,i(t) + β2(t)SMBi(t) + β3(t)HMLi(t) + εi(t) (5)

where SMBi(t) is the functional time-series size factor, and HMLi(t) is the

functional time-series value factor.

The functional five-factor model is:

Ri(t) = α(t)+β1(t)RM,i(t)+β2(t)SMBi(t)+β3(t)HMLi(t)+β4(t)RMWi(t)+β5(t)CMAi(t)+εi(t)

(6)

where RMWi(t) is the functional time-series profitability factor, and CMAi(t)

is the functional time-series investment factor.

3. Methodology

In this section, we introduce the computational issues for time-varying beta.

According to the characteristics of functional regression, we can set beta as a

function to study the time-varying.

The general functional factor regression can be expressed as follows:

Ri(t) =

m∑
j=1

βj(t)Fi,j(t) + εi(t) (7)

or

R(t) = β(t)F (t) + ε(t) (8)

where β(t) = (β1(t), . . . , βm(t)) and F (t) = (F 1(t), . . . ,Fm(t)) contains all

functional time-series factors.

As the model is a standard general linear model, we can choose β(t) by

the standard least squares criterion. We extend the method of minimising the

residual sum of squares to the functional regression case, and the least squares

fitting criterion can be shown as:

LMSSE(β) =

∫
[R(t)− β(t)F (t)]′[R(t)− β(t)F (t)]dt (9)
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The functional excess return Ri(t) is expressed by

Ri(t) =

K∑
k=1

ci,kφk(t) = C ′iΦ(t) (10)

Similarly, to obtain the time-varying beta, we should define time-series curve-

value βj(t)(t = 1, 2, . . . ,m), which is the main point in our functional factor

model. The functional beta βj(t) is expressed by

βj(t) =

Kj∑
k=1

bj,kψj,k(t) = b′jψj(t) (11)

where bj is the coefficient vector for functional beta βj(t) and ψj(t) is the

Fourier basis functions. So far, the problem of estimating beta βj(t) has turned

into valuating coefficient vector bj .

To express the model explicitly, we define B = (b′1, b
′
2, . . . , b

′
m) and

Ψ(t) =


ψ1(t) · · · 0
...

. . .
...

0 · · · ψm(t)

 .

Then the functional factor model can be rewritten as

R(t) = BΨ(t)F (t) + ε(t) (12)

and the least squares fitting criterion is:

LMSSE(β) =

∫
[R(t)−BΨ(t)F (t)]′[R(t)−BΨ(t)F (t)]dt

=

∫
R′(t)R(t)− 2F ′(t)Ψ′(t)B′R(t) + F ′(t)Ψ′(t)B′BΨ(t)F (t)dt

(13)

Based on (13), we can find the coefficient matrix B is the solution of

B

∫
F ′(t)Ψ′(t)Ψ(t)F (t)dt =

∫
F ′(t)Ψ′(t)R(t)dt (14)

Therefore, we can evaluate the coefficient matrix B, and spontaneously get the

functional time-series betas β(t), which intuitively shows the time variation.
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Next, we will determine the confidence intervals. After figuring out the

estimated coefficient matrix B̂, we change the problem of computing confidence

intervals (or standard deviation) of betas into calculating the standard deviation

of coefficient vectors.

The coefficient matrix of betas can be expressed by

B̂ =

(∫
F ′(t)Ψ′(t)Ψ(t)F (t)dt

)−1 ∫
F ′(t)Ψ′(t)R(t)dt

=

(∫
F ′(t)Ψ′(t)Ψ(t)F (t)dt

)−1 ∫
F ′(t)Ψ′(t)CΦ(t)dt (15)

Then we get6

vec(B̂) =

(∫
F ′(t)Ψ′(t)Ψ(t)F (t)dt

)−1 ∫
Φ′(t)⊗ F ′(t)Ψ′(t)dtvec(C) (16)

We denote Sψ mapping raw data of excess return R into coefficient matrix

C, that is, C = RSψ, then

vec(C) = (S′ψ(t)⊗ I)vec(R) (17)

The variance of raw data R is given by

var(vec(R)) = Σε ⊗ I (18)

where Σε is the variance-covariance matrix of residual vectors. Then the vari-

ance of estimated coefficient matrix B̂ is

var(vec(B̂)) = A(S′ψ(t)⊗ I)Σε ⊗ I(S′ψ(t)⊗ I)′A′ (19)

6vec-operator: vec(A) = (a11, a21, . . . , am1, . . . , a1n, a2n, . . . , amn)′ where A =
a11 · · · a1n

a21 · · · a2n

...
. . .

...

am1 · · · amn

.

Kronecker-operator ⊗: there are matrices Am×n and Bp×q , then we can get a mn×pq matrix

as follows:

A⊗B =


a11B · · · a1nB

a21B · · · a2nB

...
. . .

...

am1B · · · amnB


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where A =
(∫
F ′(t)Ψ′(t)Ψ(t)F (t)dt

)−1 ∫
Φ′(t)⊗F ′(t)Ψ′(t)dt. So far, we have

the variance of the estimated coefficient matrix B̂, and then we can compute

the confidence intervals of estimated time-varying betas.

4. Data

In this paper, we intend to investigate functional factor models in the Chi-

nese stock market. We choose all A shares (except stocks denoted ST and *ST

7) returns with monthly frequency from the CSMAR database and all risk fac-

tors data with monthly frequency from the China Asset Management Research

Center of CUFE. The data period is from January 1997 to December 2018 (264

months in total).

We construct 25 (or 100) value-weighted portfolios as observations, and dif-

ferent observations correspond to different excess returns (dependent variable)

and the same risk factors (independent variables):

Dependent variable: excess returns on 25 (or 100) Size-B/M portfolios. 8 We

sort all A shares by the market value and divide them into five (or ten) groups,

then sort the stocks in each size group by the book-to-market ratio and divide

them into finer five (or ten) groups, so that eventually, we have 25 Size-B/M

portfolios (or 100 Size-B/M portfolios). The excess returns on value-weighted

portfolios are shown as follows:

Ri,t =
∑
k

mvik,t∑
kmv

i
k,t

rik,t, i = 1, 2, . . . , 25; t = 1, 2, . . . , 264 (20)

or

Ri,t =
∑
k

mvik,t∑
kmv

i
k,t

rik,t, i = 1, 2, . . . , 100; t = 1, 2, . . . , 264 (21)

7In the Chinese stock market, stocks with ST denotes that the listed company has been in

deficit for two consecutive fiscal years, and stocks with *ST denotes that the listed company

has been in deficit for three consecutive fiscal years, both of these companies are faced with

delisting risk.
8In the robust test, we also construct 25 (or 100) Size-OP Portfolios and 25 (or 100) Size-Inv

Portfolios, where OP represents operating profitability and Inv represents investment.
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where Ri,t is the excess return on portfolio i at time t, rik,t is the excess return

on stock k at time t in ith portfolio and mvik,t is the corresponding market value

for stock k.

Independent variables: risk factors. For different observations (25 or 100 port-

folios), we apply the same (25 or 100) risk factors (market factor, size factor,

value factor, profitability factor and investment factor) constructed according

to the method in Fama and French (2015).

Next, we build functional data for time-series excess returns and risk factors.

To specification, we map the time-series data {Ri,t}264t=1 into L2[0, 1] to generate

functional data {Ri(t), 0 ≤ t ≤ 1}, and Ri(t) can be expressed by basis function

expansion Horváth and Kokoszka (2012):

Ri(t) =

K∑
k=1

ci,kφk(t) = C ′iΦ(t) (22)

where Φ(t) is the basis functions, and Ci is a coefficient vector of the basis

function expansion, then the general functional factor model is as follows:

Ri(t) =

m∑
j=1

βj(t)Fi,j(t) + εi(t), i = 1, 2, . . . , 25 (23)

or

Ri(t) =

m∑
j=1

βj(t)Fi,j(t) + εi(t), i = 1, 2, . . . , 100. (24)

where Fi,j(t) denotes every functional risk factor Fi,j(t) is the same for all i.

Generally speaking, there are two kinds of basis functions we can choose: one is

the Fourier basis functions which are suitable for periodic observations, and the

other is the spline basis functions which are ideal for non-periodic observations.

We choose the Fourier basis functions because we think both excess returns and

risk factors are periodic in the long run, so do time-varying betas. The raw data

of factors and functional factors are shown in Figure1-Figure5, and the Fourier

basis functions for estimated betas are shown in Figure6.

10



−0
.2

0.
0

0.
1

0.
2

0.
3

raw data_mkt

month

01/1997 05/2004 09/2011 12/2018

−0
.1

5
−0

.0
5

0.
05

0.
15

functional_mkt

month

01/1997 05/2004 09/2011 12/2018

Figure 1: The market factor in the Chinese stock market (January 1997 - December 2018).

The left panel shows raw data of the market factor, and the right panel shows the functional

market factor.
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Figure 2: The size factor in the Chinese stock market (January 1997 - December 2018). The

left panel shows raw data of the size factor, and the right panel shows the functional size

factor.
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Figure 3: The value factor in the Chinese stock market (January 1997 - December 2018). The

left panel shows raw data of the value factor, and the right panel shows the functional value

factor.
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Figure 4: The profitability factor in the Chinese stock market (January 1997 - December

2018). The left panel shows raw data of the profitability factor, and the right panel shows the

functional profitability factor.
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Figure 5: The investment factor in the Chinese stock market (January 1997 - December

2018). The left panel shows raw data of the investment factor, and the right panel shows the

functional investment factor.
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Figure 6: The Fourier basis functions for time-varying betas
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5. Functional Factor Models

In this section, we want to investigate the time variation of each beta in

the Chinese stock market. First, we construct 25 (or 100) Size-B/M portfo-

lios 9 (B/M represents book-to-market ratio) with all A shares in order to get

the value-weight (VW) excess returns. Then, we employ the functional factor

models with 25 (or 100) Size-B/M portfolios for time-varying betas (see (25)

and (26)). As mentioned earlier, one advantage of functional factor models is

relaxing the constant-betas assumption. Now we point out another advantage:

for every risk factor, functional factor models can obtain the conjoint βj(t) of all

portfolios, which exhibits the common exposures of all A shares to each risk fac-

tor in the Chinese stock market. In section 5.2, we show that different portfolio

constructions have little influence on the time variation of betas.

The least squares fitting criterion with 25 (or 100) portfolios is:

min
{βj(t)}mj=1

25∑
i=1

∫ 1

0

Ri(t)− m∑
j=1

βj(t)Fi,j(t)

2

dt (25)

or

min
{βj(t)}mj=1

100∑
i=1

∫ 1

0

Ri(t)− m∑
j=1

βj(t)Fi,j(t)

2

dt (26)

5.1. Time-varying Betas

With functional excess returns on 25 (or 100) Size-B/M portfolios and func-

tional time-series risk factors, we can employ the functional CAPM, the func-

tional three-factor model, and the functional five-factor model respectively. The

time-varying betas are shown in Figure7-Figure12 (the solid line displays the

estimated βj(t) and the dashed lines indicate 95% confidence intervals for βj(t)),

and the regression details of functional factor models are shown in Table1 and

2 (Table1 and 2 display the coefficient vectors bj for each βj(t)).

9 The reason why we use excess returns of portfolios instead of individual stocks is that

there is a lack of data in individual stocks on some trading days due to suspension and other

reasons, and using excess returns of portfolios does not affect the results.
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Figure7 (or Figure8) reveals the time-series exposures to the market factor.

We can see that our portfolios have positive exposures to the market factor in the

Chinese stock market, which means the market factor always has a positive effect

on the returns of A shares. From 1997 to 2003, exposures to the market factor

have been increasing, even more than 1. In the early 1990s, when the stock

exchange was established, Chinese shareholders showed great enthusiasm for

investment. Even if the Chinese government promulgated the securities law in

1997 to regulate the stock market, it failed to weaken the enthusiasm of investors.

On June 29, 1999, the price-earnings ratio of Shenzhen and Shanghai Stock

Exchanges reached about 48 times. However, most shareholders do not have the

expertise corresponding to their investment behaviour, In addition, many state-

owned enterprises with imperfect development were listed during this period,

and stock market regulation was very inadequate. All of this raises market risk.

During 2005-2006, the Chinese government implemented the non-tradable share

reform to improve the governance of listed state-owned enterprises and solve the

interests-conflict problem of shareholders in the A-share market. As the Chinese

stock market matures, exposures to the market factor gradually decline. This

situation continued until the financial crisis broke out. As Schlueter and Sievers

(2014) point out business risks have an impact on market beta and the market

beta increased again after the financial crisis broke out. After several ups and

downs in the stock market, more and more investors choose value investing, and

exposures to the market risk are no longer as high as they were at first.
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Figure9 (or Figure10) shows the time-series exposures to the market, size,

and value factors. We conclude that: (a) Exposures to the market factor are

always positive, which is the same as the functional CAPM. (b) Exposures to

the size factor are positive in two periods (before June 1999 and after December

2006), but during 2000 to 2006, exposures to the size factor are negative, which

may be due to non-tradable share structure in the Chinese stock market. Before

2005, there were two kinds of shares in Chinese listed companies: non-tradable

shares and tradable shares. Non-tradable shares occupied a large proportion,

which seriously hindered the circulation of listed companies shares, so the size

effect of the listed company was hardly reflected in the price. After the non-

tradable share reform, the securities market has become more market-oriented,

and the small-scale companies have gradually shown higher excess returns. (c)

Exposures to the value factor are only positive during 2011 to 2016, so the value

factor has a positive effect on A shares only during a short period of time (from

2011 to 2016). Looking back at the history of the Chinese stock market, the

common time-varying beta of the value factor may be related to the performance

of the stock market. Before 2011, the stock market often experienced large or

small bear markets and bull markets, making the market always in turmoil.

During the financial crisis, exposures to the value factor reached its lowest point.

Since the launch of stock index futures in 2011, the stock market has experienced

a long period of stability, and the value factor began to have a positive effect

on A shares, until June 2015 when the bear market reappeared, the common

beta of the value factor changed. Therefore, the positive impact of the value

factor may be related to stock market stability, and investors often pursue value

investing when the stock market is stable.
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Figure 9: Time-varying beta of the functional 3-factor model with 25 Size-B/M portfolios
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Figure 10: Time-varying beta of the functional 3-factor model with 100 Size-B/M portfolios
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Figure11 (or Figure12) shows the time-series exposures to the market, size,

value, profitability, and investment factors. Generally speaking, exposures to

the market, size, and value factors in the functional five-factor model are similar

to that of the functional three-factor model, and both the profitability factor

and the investment factor have negative effects on A shares most of the time.

To be specific: (a) The market factor has a positive effect on A shares at all

times. (b) Combining the functional three-factor model, both models show the

size factor has a positive effect from 2012 to 2016. Maybe it’s because the Chi-

nese stock market stayed in a relatively stable period after 2011, and became

the bear market after June 2015. All in all, the size factor has a positive effect

during a stable period. (c) Both the functional three-factor model and the func-

tional five-factor model show that the value factor had a positive effect from

2011 to 2016. So the same as the size factor, the value factor has a positive

effect in a stable period. (d) Exposures to the profitability factor were almost

always negative in the whole sample period, and reached the minimum after

the financial crisis. Valuation theory holds that the company’s profitability is

usually positively related to expected returns (Haugen et al., 1996; Fama and

French, 2006). Nevertheless, portfolios have negative exposures to the profitabil-

ity factor in the Chinese stock market, that is, most portfolios do not have high

excess returns compared with the robust-profitability portfolio. (e) Exposures

to the investment factor gradually changed from negative to positive when the

non-tradable share reform was launched in China, and increased to 1 in 2007.

The non-tradable share reform is conducive to improving corporate governance

and investment structure. But during the financial crisis, exposures to the in-

vestment factor reached its maximum and began to decline due to stock market

turbulence.
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Figure 11: Time-varying beta of the functional 5-factor model with 25 Size-B/M portfolios
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Figure 12: Time-varying beta of the functional 5-factor model with 100 Size-B/M portfolios
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Table 1: Coefficient matrix B̂ with 25 value-weight Size-B/M portfolios

b1 b2 b3 b4 b5

Functional CAPM

Market factor 15.1877 0.9243 -1.2103 0.1693 -1.0153

Functional Three-factor Model

Market factor 15.9079 2.0642 -1.3010 -1.0733 -1.3455

Size factor 2.8540 -5.8313 1.6908 -0.2215 1.6446

Value factor -4.7360 -3.3843 3.0480 -0.0041 -2.7960

Functional Five-factor Model

Market factor 15.6311 2.1801 0.1384 -0.7365 0.1415

Size factor -3.1744 -1.2970 9.2743 -1.5089 -10.5884

Value factor -2.9267 -5.4290 7.3809 -1.0726 -13.0348

Profitability factor -13.1955 6.4993 5.0407 0.3500 -1.9246

Investment factor -8.5420 -0.1847 -5.7555 0.3540 14.6527
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Table 2: Coefficient matrix B̂ with 100 value-weight Size-B/M portfolios

b1 b2 b3 b4 b5

Functional CAPM

Market factor 15.4739 0.8829 -1.3317 0.1187 -1.0494

Functional Three-factor Model

Market factor 16.1191 1.9201 -1.3112 -1.0403 -1.3865

Size factor 3.6129 -5.8935 1.4474 -0.1743 1.7797

Value factor -4.3223 -3.0301 2.3910 -0.4082 -2.5844

Functional Five-factor Model

Market factor 15.7536 1.9901 0.2493 -0.6252 -0.2562

Size factor -3.1156 -0.6659 9.7549 -1.7854 -10.5950

Value factor -2.6380 -4.9560 7.0438 -1.6655 -13.2370

Profitability factor -14.3465 6.5660 6.0725 0.7583 -1.5171

Investment factor -8.9860 -0.9261 -5.5226 1.2188 15.2399
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5.2. The Robust Test

To answer whether different portfolio constructions with all A shares affect

the time variation of betas, we perform functional factor models with 25 (or 100)

Size-OP portfolios (OP represents operating profitability), 25 (or 100) Size-Inv

portfolios (Inv represents investment) respectively. The robust tests show that

different portfolio constructions have little influence on the time variation of

betas. To be concise, the robust test results with 25 (or 100) Size-Inv portfolios

are shown in Appendix A.

Figure13-Figure15 (or Figure16-Figure18)(the solid line displays the esti-

mated βj(t) and the dashed lines indicate 95% confidence intervals for βj(t))

and Table3 (or Table4) shows the functional regression results with 25 (or 100)

Size-OP Portfolios, from which we can see the time variations of all βj(t) (t) for

five risk factors are similar to that of the functional regressions with 25 (or 100)

Size-B/M portfolios (specific differences are shown in Table3-Table4). There-

fore, the common exposures of all portfolios to the risk factor are robust in the

Chinese stock market.

25 Size-OP Portfolios
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Figure 13: Time-varying beta of the functional CAPM with 25 Size-OP portfolios
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Figure 14: Time-varying beta of the functional 3-factor model with 25 Size-OP portfolios

0
.6

0
.8

1
.0

1
.2

beta_mkt

month

01/1997 06/2013

−
2

.0
−

1
.0

0
.0

1
.0

beta_smb

month

01/1997 06/2013

−
2

−
1

0
1

beta_hml

month

01/1997 06/2013

−
1

.5
−

0
.5

0
.5

beta_rmw

month

01/1997 06/2013

−
2

−
1

0
1

beta_cma

month

01/1997 06/2013

Figure 15: Time-varying beta of the functional 5-factor model with 25 Size-OP portfolios
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Table 3: Coefficient matrix B̂ with 25 value-weight Size-OP portfolios

b1 b2 b3 b4 b5

Functional CAPM

Market factor 15.2627 0.9248 -1.1516 0.2109 -1.0291

Functional Three-factor Model

Market factor 15.9265 2.0043 -1.2286 -1.0055 -1.3308

Size factor 3.1283 -5.7862 1.6948 -0.3718 1.5159

Value factor -4.3647 -3.4515 3.1996 -0.0853 -2.6831

Functional Five-factor Model

Market factor 15.6219 2.0435 0.2878 -0.6781 0.2499

Size factor -3.0152 -1.2114 9.4331 -1.8720 -10.4542

Value factor -2.6679 -5.2267 7.4475 -1.1088 -13.0541

Profitability factor -13.5796 5.8189 5.5413 0.2759 -1.3543

Investment factor -8.7690 -0.9937 -5.3378 0.5203 14.9002
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100 Size-OP Portfolios
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Figure 16: Time-varying beta of the functional CAPM with 100 Size-OP portfolios
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Figure 17: Time-varying beta of the functional 3-factor model with 100 Size-OP portfolios

26



0
.6

0
.8

1
.0

1
.2

beta_mkt

month

01/1997 06/2013

−
2

.0
−

1
.0

0
.0

1
.0

beta_smb

month

01/1997 06/2013

−
2

−
1

0
1

beta_hml

month

01/1997 06/2013

−
1

.5
−

0
.5

0
.5

beta_rmw

month

01/1997 06/2013

−
2

−
1

0
1

beta_cma

month

01/1997 06/2013

Figure 18: Time-varying beta of the functional 5-factor model with 100 Size-OP portfolios

Table 4: Coefficient matrix B̂ with 100 value-weight Size-OP portfolios

b1 b2 b3 b4 b5

Functional CAPM

Market factor 15.4866 0.8723 -1.2587 0.2236 -1.0637

Functional Three-factor Model

Market factor 16.1095 1.8975 -1.2486 -0.9398 -1.3731

Size factor 3.7256 -5.7859 1.5571 -0.3005 1.7158

Value factor -4.2848 -3.1898 2.6713 -0.3640 -2.6040

Functional Five-factor Model

Market factor 15.7804 1.8600 0.3746 -0.5502 0.3354

Size factor -2.7861 -0.7330 9.7748 -2.1016 -10.3958

Value factor -2.6966 -4.7765 7.0515 -1.5304 -13.2967

Profitability factor -14.1769 5.6757 6.2191 0.5276 -0.9772

Investment factor -8.9708 -1.7240 -5.2188 1.1588 15.4871
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6. Conclusion

This paper introduces the functional factor models with time-varying betas

(the functional CAPM, the functional three-factor model, and the function-

al five-factor model) and investigates the time variations of exposures to risk

factors (the market, size, value, profitability, and investment factors). The ad-

vantage of functional factor models is that it figures out time-varying betas

directly because the estimated betas of functional regression can be functional,

so functional factor models modify the constant-beta assumption for the CAPM

and the multi-factor models. The results show that in the Chinese stock market,

(a) the market factor always has a positive effect on returns of A shares over

the whole period. In the early years once the stock exchange was established,

exposures to the market factor have been increasing, even more than 1. After

the non-tradable share reform, exposures to the market factor began to decrease

until the financial crisis broke out. (b) The size factor had a positive effect on

returns of A shares from 2012 to 2016, which is a relatively long stable period

in China. (c) Similar to the size factor, the value factor had a positive effect

in a stable period (from 2011 to 2016). (d) The profitability factor always has

a negative effect on returns of A shares. Exposures to the profitability factor

reached the minimum after the financial crisis. (e) The investment factor had

a positive effect after the non-tradable share reform and turned to a negative

effect since the 2008 financial crisis.

References

Acharya, V.V., Pedersen, L.H., 2005. Asset pricing with liquidity risk. J. Fi-

nanc. Econ. 77, 375–410. doi:https://doi.org/10.1016/j.jfineco.2004.

06.007.

Blume, M.E., 1975. Betas and their regression tendencies. J. Finance 30, 785–

795. doi:https://doi.org/10.1111/j.1540-6261.1975.tb01850.x.

28

http://dx.doi.org/https://doi.org/10.1016/j.jfineco.2004.06.007
http://dx.doi.org/https://doi.org/10.1016/j.jfineco.2004.06.007
http://dx.doi.org/https://doi.org/10.1111/j.1540-6261.1975.tb01850.x


Bodurtha Jr, J.N., Mark, N.C., 1991. Testing the capm with time-varying risks

and returns. J. Finance 46, 1485–1505. doi:https://doi.org/10.1111/j.

1540-6261.1991.tb04627.x.

Bollerslev, T., Engle, R.F., Wooldridge, J.M., 1988. A capital asset pricing

model with time-varying covariances. J. Polit. Econ. 96, 116–131. doi:https:

//doi.org/10.1016/j.jempfin.2016.01.014.

Borup, D., 2019. Asset pricing model uncertainty. J. Empir. Financ. 54, 166–

189. doi:https://doi.org/10.1016/j.jempfin.2019.07.005.

Bos, T., Newbold, P., 1984. An empirical investigation of the possibility of

stochastic systematic risk in the market model. J. Bus. 57, 35–41. doi:https:

//doi.org/10.1086/296222.

Breeden, D.T., 1979. An intertemporal asset pricing model with stochastic

consumption and investment opportunities. J. Financ. Econ. 7, 265–296.

doi:https://doi.org/10.1016/0304-405x(79)90016-3.

Bu, H., Tang, W., Wu, J., 2019. Time-varying comovement and changes of co-

movement structure in the chinese stock market: A causal network method. E-

con. Modell. 81, 181–204. doi:https://doi.org/10.1016/j.econmod.2019.

03.002.

Campbell, J.Y., Hentschel, L., 1992. No news is good news: An asymmetric

model of changing volatility in stock returns. J. Financ. Econ. 31, 281–318.

doi:https://doi.org/10.1016/0304-405X(92)90037-X.

Cao, R., Horváth, L., Liu, Z., Zhao, Y., 2019. A study of data-driven mo-

mentum and disposition effects in the chinese stock market by functional da-

ta analysis. Rev. Quant. Finan. Acc. , 1–24doi:https://doi.org/10.1007/

s11156-019-00791-x.

Carhart, M.M., 1997. On persistence in mutual fund performance. J. Finance

52, 57–82. doi:https://doi.org/10.1111/j.1540-6261.1997.tb03808.x.

29

http://dx.doi.org/https://doi.org/10.1111/j.1540-6261.1991.tb04627.x
http://dx.doi.org/https://doi.org/10.1111/j.1540-6261.1991.tb04627.x
http://dx.doi.org/https://doi.org/10.1016/j.jempfin.2016.01.014
http://dx.doi.org/https://doi.org/10.1016/j.jempfin.2016.01.014
http://dx.doi.org/https://doi.org/10.1016/j.jempfin.2019.07.005
http://dx.doi.org/https://doi.org/10.1086/296222
http://dx.doi.org/https://doi.org/10.1086/296222
http://dx.doi.org/https://doi.org/10.1016/0304-405x(79)90016-3
http://dx.doi.org/https://doi.org/10.1016/j.econmod.2019.03.002
http://dx.doi.org/https://doi.org/10.1016/j.econmod.2019.03.002
http://dx.doi.org/https://doi.org/10.1016/0304-405X(92)90037-X
http://dx.doi.org/https://doi.org/10.1007/s11156-019-00791-x
http://dx.doi.org/https://doi.org/10.1007/s11156-019-00791-x
http://dx.doi.org/https://doi.org/10.1111/j.1540-6261.1997.tb03808.x


Collins, D.W., Ledolter, J., Rayburn, J., 1987. Some further evidence on the

stochastic properties of systematic risk. J. Bus. , 425–448doi:https://doi.

org/10.1086/296405.

Engle, R.F., 2016. Dynamic conditional beta. J. Financ. Econom. 14, 643–667.

doi:https://doi.org/10.1093/jjfinec/nbw006.

Fama, E.F., French, K.R., 1992. The cross-section of expected stock returns. J.

Finance 47, 427–465. doi:https://doi.org/10.1111/j.1540-6261.1992.

tb04398.x.

Fama, E.F., French, K.R., 1993. Common risk factors in the returns on stock-

s and bonds. J. Financ. Econ. 33, 3–56. doi:https://doi.org/10.1016/

0304-405X(93)90023-5.

Fama, E.F., French, K.R., 2006. Profitability, investment and average returns.

J. Financ. Econ. 82, 491–518. doi:https://doi.org/10.1016/j.jfineco.

2005.09.009.

Fama, E.F., French, K.R., 2015. A five-factor asset pricing model. J. Financ.

Econ. 116, 1–22. doi:https://doi.org/10.1016/j.jfineco.2014.10.010.

Fama, E.F., French, K.R., 2016. Dissecting anomalies with a five-factor model.

Rev. Financ. Stud. 29, 69–103. doi:https://doi.org/10.1093/rfs/hhv043.

Ferson, W.E., Harvey, C.R., 1991. The variation of economic risk premiums. J.

Polit. Econ. 99, 385–415. doi:https://doi.org/10.1086/261755.

Glosten, L.R., Jagannathan, R., Runkle, D.E., 1993. On the relation between

the expected value and the volatility of the nominal excess return on stocks. J.

Finance 48, 1779–1801. doi:https://doi.org/10.1111/j.1540-6261.1993.

tb05128.x.

Hameed, A., 1997. Time-varying factors and cross-autocorrelations in short-

horizon stock returns. J. Financ. Res. 20, 435–458. doi:https://doi.org/

10.1111/j.1475-6803.1997.tb00259.x.

30

http://dx.doi.org/https://doi.org/10.1086/296405
http://dx.doi.org/https://doi.org/10.1086/296405
http://dx.doi.org/https://doi.org/10.1093/jjfinec/nbw006
http://dx.doi.org/https://doi.org/10.1111/j.1540-6261.1992.tb04398.x
http://dx.doi.org/https://doi.org/10.1111/j.1540-6261.1992.tb04398.x
http://dx.doi.org/https://doi.org/10.1016/0304-405X(93)90023-5
http://dx.doi.org/https://doi.org/10.1016/0304-405X(93)90023-5
http://dx.doi.org/https://doi.org/10.1016/j.jfineco.2005.09.009
http://dx.doi.org/https://doi.org/10.1016/j.jfineco.2005.09.009
http://dx.doi.org/https://doi.org/10.1016/j.jfineco.2014.10.010
http://dx.doi.org/https://doi.org/10.1093/rfs/hhv043
http://dx.doi.org/https://doi.org/10.1086/261755
http://dx.doi.org/https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
http://dx.doi.org/https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
http://dx.doi.org/https://doi.org/10.1111/j.1475-6803.1997.tb00259.x
http://dx.doi.org/https://doi.org/10.1111/j.1475-6803.1997.tb00259.x


Haugen, R.A., Baker, N.L., et al., 1996. Commonality in the determinants of

expected stock returns. J. Financ. Econ. 41, 401–439. doi:https://doi.org/

10.1016/0304-405x(95)00868-f.
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Appendix A.

25 Size-Inv Portfolios
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Figure A.19: Time-varying beta of the functional CAPM with 25 Size-Inv portfolios
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Figure A.20: Time-varying beta of the functional 3-factor model with 25 Size-Inv portfolios
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Figure A.21: Time-varying beta of the functional 5-factor model with 25 Size-Inv portfolios

Table A.5: Coefficient matrix B̂ with 25 value-weight Size-Inv portfolios

b1 b2 b3 b4 b5

Functional CAPM

Market factor 15.2965 1.0508 -1.3031 0.0925 -0.9896

Functional Three-factor Model

Market factor 15.9649 2.2212 -1.4356 -1.0749 -1.3346

Size factor 2.8167 -5.5896 1.8389 -0.3275 1.8716

Value factor -4.2286 -4.0609 2.9558 0.3259 -2.6180

Functional Five-factor Model

Market factor 15.7517 2.2476 0.0879 -0.7704 0.2078

Size factor -2.7254 -1.8044 8.9829 -1.2806 -10.5627

Value factor -2.4465 -6.0799 6.8165 -0.6723 -12.9895

Profitability factor -12.4034 5.9513 4.7625 0.4820 -2.1523

Investment factor -8.1057 0.1966 -5.4027 0.0222 14.5346
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100 Size-Inv Portfolios
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Figure A.22: Time-varying beta of the functional CAPM with 100 Size-Inv portfolios
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Figure A.23: Time-varying beta of the functional 3-factor model with 100 Size-Inv portfolios
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Figure A.24: Time-varying beta of the functional 5-factor model with 100 Size-Inv portfolios

Table A.6: Coefficient matrix B̂ with 100 value-weight Size-Inv portfolios

b1 b2 b3 b4 b5

Functional CAPM

Market factor 15.4862 0.9980 -1.3236 0.1262 -0.9734

Functional Three-factor Model

Market factor 16.0898 2.0172 -1.3053 -0.9860 -1.2866

Size factor 3.6786 -5.6800 1.5478 -0.2042 1.7981

Value factor -4.0751 -3.3008 2.2550 -0.2346 -2.5596

Functional Five-factor Model

Market factor 15.7404 1.9822 0.3208 -0.5988 0.4205

Size factor -2.9324 -0.9960 9.6985 -1.6874 -10.8225

Value factor -2.4168 -5.1033 6.6233 -1.4078 -13.4735

Profitability factor -14.2424 5.8592 5.9251 0.6462 -1.5528

Investment factor -8.8781 -1.0287 -5.4331 0.8587 15.4496
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